State Key Laboratory of Information Engineering in Survering, Mapping and Remote Sensing, Wuhan University
Abstract:Existing Tool-Integrated Reasoning (TIR) models have effectively extended the question-answering capabilities of LLMs by incorporating external tools. However, real-world scenarios present numerous open-ended problems where fixed tools often fail to meet task requirements. Furthermore, the lack of self-optimization mechanisms means that erroneous tool outputs can mislead the LLM's responses. Additionally, the construction of existing tools entails significant manual effort, which consequently constrains their applicability. Recognizing that the reasoning traces of LLMs encapsulate implicit problem-solving capabilities, we propose UCT, a novel training-free framework that transforms agents from tool users to tool creators. This approach harvests reasoning experiences and distills them into reusable assets. This method transforms the agent from a mere tool user into a tool creator, enabling adaptive tool creation and self-updating during the inference process. We also introduce a memory consolidation mechanism to maintain the tool library, ensuring high reusability of retained experiential memory for subsequent reasoning tasks. This novel automated tool construction paradigm continuously improves tool quality during reasoning, allowing the overall agent system to progress without additional training. Extensive experiments demonstrate that our method serves as a novel paradigm for enhancing the capabilities of TIR models. In particular, the significant performance gains achieved +20.86%$\uparrow$ and +23.04%$\uparrow$ on benchmarks across multi-domain mathematical and scientific reasoning tasks validate the self-evolving capability of the agent.
Abstract:Modern large language models are increasingly deployed under compute and memory constraints, making flexible control of model capacity a central challenge. While sparse and low-rank structures naturally trade off capacity and performance, existing approaches often rely on heuristic designs that ignore layer and matrix heterogeneity or require model-specific architectural modifications. We propose SALAAD, a plug-and-play framework applicable to different model architectures that induces sparse and low-rank structures during training. By formulating structured weight learning under an augmented Lagrangian framework and introducing an adaptive controller that dynamically balances the training loss and structural constraints, SALAAD preserves the stability of standard training dynamics while enabling explicit control over the evolution of effective model capacity during training. Experiments across model scales show that SALAAD substantially reduces memory consumption during deployment while achieving performance comparable to ad-hoc methods. Moreover, a single training run yields a continuous spectrum of model capacities, enabling smooth and elastic deployment across diverse memory budgets without the need for retraining.
Abstract:High-fidelity general audio compression at ultra-low bitrates is crucial for applications ranging from low-bandwidth communication to generative audio-language modeling. Traditional audio compression methods and contemporary neural codecs are fundamentally designed for waveform reconstruction. As a result, when operating at ultra-low bitrates, these methods degrade rapidly and often fail to preserve essential information, leading to severe acoustic artifacts and pronounced semantic distortion. To overcome these limitations, we introduce Generative Audio Compression (GAC), a novel paradigm shift from signal fidelity to task-oriented effectiveness. Implemented within the AI Flow framework, GAC is theoretically grounded in the Law of Information Capacity. These foundations posit that abundant computational power can be leveraged at the receiver to offset extreme communication bottlenecks--exemplifying the More Computation, Less Bandwidth philosophy. By integrating semantic understanding at the transmitter with scalable generative synthesis at the receiver, GAC offloads the information burden to powerful model priors. Our 1.8B-parameter model achieves high-fidelity reconstruction of 32kHz general audio at an unprecedented bitrate of 0.275kbps. Even at 0.175kbps, it still preserves a strong intelligible audio transmission capability, which represents an about 3000x compression ratio, significantly outperforming current state-of-the-art neural codecs in maintaining both perceptual quality and semantic consistency.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Traditional workflow-based agents exhibit limited intelligence when addressing real-world problems requiring tool invocation. Tool-integrated reasoning (TIR) agents capable of autonomous reasoning and tool invocation are rapidly emerging as a powerful approach for complex decision-making tasks involving multi-step interactions with external environments. In this work, we introduce MindWatcher, a TIR agent integrating interleaved thinking and multimodal chain-of-thought (CoT) reasoning. MindWatcher can autonomously decide whether and how to invoke diverse tools and coordinate their use, without relying on human prompts or workflows. The interleaved thinking paradigm enables the model to switch between thinking and tool calling at any intermediate stage, while its multimodal CoT capability allows manipulation of images during reasoning to yield more precise search results. We implement automated data auditing and evaluation pipelines, complemented by manually curated high-quality datasets for training, and we construct a benchmark, called MindWatcher-Evaluate Bench (MWE-Bench), to evaluate its performance. MindWatcher is equipped with a comprehensive suite of auxiliary reasoning tools, enabling it to address broad-domain multimodal problems. A large-scale, high-quality local image retrieval database, covering eight categories including cars, animals, and plants, endows model with robust object recognition despite its small size. Finally, we design a more efficient training infrastructure for MindWatcher, enhancing training speed and hardware utilization. Experiments not only demonstrate that MindWatcher matches or exceeds the performance of larger or more recent models through superior tool invocation, but also uncover critical insights for agent training, such as the genetic inheritance phenomenon in agentic RL.
Abstract:Local high strain in solid rocket motor grains is a primary cause of structural failure. However, traditional numerical simulations are computationally expensive, and existing surrogate models cannot explicitly establish geometric models and accurately capture high-strain regions. Therefore, this paper proposes an adaptive graph network, GrainGNet, which employs an adaptive pooling dynamic node selection mechanism to effectively preserve the key mechanical features of structurally critical regions, while concurrently utilising feature fusion to transmit deep features and enhance the model's representational capacity. In the joint prediction task involving four sequential conditions--curing and cooling, storage, overloading, and ignition--GrainGNet reduces the mean squared error by 62.8% compared to the baseline graph U-Net model, with only a 5.2% increase in parameter count and an approximately sevenfold improvement in training efficiency. Furthermore, in the high-strain regions of debonding seams, the prediction error is further reduced by 33% compared to the second-best method, offering a computationally efficient and high-fidelity approach to evaluate motor structural safety.
Abstract:Creating offensive advantages during open play is fundamental to football success. However, due to the highly dynamic and long-sequence nature of open play, the potential tactic space grows exponentially as the sequence progresses, making automated tactic discovery extremely challenging. To address this, we propose TacEleven, a generative framework for football open-play tactic discovery developed in close collaboration with domain experts from AJ Auxerre, designed to assist coaches and analysts in tactical decision-making. TacEleven consists of two core components: a language-controlled tactical generator that produces diverse tactical proposals, and a multimodal large language model-based tactical critic that selects the optimal proposal aligned with a high-level stylistic tactical instruction. The two components enables rapid exploration of tactical proposals and discovery of alternative open-play offensive tactics. We evaluate TacEleven across three tasks with progressive tactical complexity: counterfactual exploration, single-step discovery, and multi-step discovery, through both quantitative metrics and a questionnaire-based qualitative assessment. The results show that the TacEleven-discovered tactics exhibit strong realism and tactical creativity, with 52.50% of the multi-step tactical alternatives rated adoptable in real-world elite football scenarios, highlighting the framework's ability to rapidly generate numerous high-quality tactics for complex long-sequence open-play situations. TacEleven demonstrates the potential of creatively leveraging domain data and generative models to advance tactical analysis in sports.
Abstract:Reinforcement learning has significantly enhanced the reasoning capabilities of Large Language Models (LLMs) in complex problem-solving tasks. Recently, the introduction of DeepSeek R1 has inspired a surge of interest in leveraging rule-based rewards as a low-cost alternative for computing advantage functions and guiding policy optimization. However, a common challenge observed across many replication and extension efforts is that when multiple sampled responses under a single prompt converge to identical outcomes, whether correct or incorrect, the group-based advantage degenerates to zero. This leads to vanishing gradients and renders the corresponding samples ineffective for learning, ultimately limiting training efficiency and downstream performance. To address this issue, we propose a consistency-aware policy optimization framework that introduces a structured global reward based on outcome consistency, the global loss based on it ensures that, even when model outputs show high intra-group consistency, the training process still receives meaningful learning signals, which encourages the generation of correct and self-consistent reasoning paths from a global perspective. Furthermore, we incorporate an entropy-based soft blending mechanism that adaptively balances local advantage estimation with global optimization, enabling dynamic transitions between exploration and convergence throughout training. Our method introduces several key innovations in both reward design and optimization strategy. We validate its effectiveness through substantial performance gains on multiple mathematical reasoning benchmarks, highlighting the proposed framework's robustness and general applicability. Code of this work has been released at https://github.com/hijih/copo-code.git.




Abstract:Generating graphs with hierarchical structures remains a fundamental challenge due to the limitations of Euclidean geometry in capturing exponential complexity. Here we introduce \textbf{GGBall}, a novel hyperbolic framework for graph generation that integrates geometric inductive biases with modern generative paradigms. GGBall combines a Hyperbolic Vector-Quantized Autoencoder (HVQVAE) with a Riemannian flow matching prior defined via closed-form geodesics. This design enables flow-based priors to model complex latent distributions, while vector quantization helps preserve the curvature-aware structure of the hyperbolic space. We further develop a suite of hyperbolic GNN and Transformer layers that operate entirely within the manifold, ensuring stability and scalability. Empirically, our model reduces degree MMD by over 75\% on Community-Small and over 40\% on Ego-Small compared to state-of-the-art baselines, demonstrating an improved ability to preserve topological hierarchies. These results highlight the potential of hyperbolic geometry as a powerful foundation for the generative modeling of complex, structured, and hierarchical data domains. Our code is available at \href{https://github.com/AI4Science-WestlakeU/GGBall}{here}.
Abstract:Diffusion models hold great potential in robotics due to their ability to capture complex, high-dimensional data distributions. However, their lack of constraint-awareness limits their deployment in safety-critical applications. We propose Constraint-Aware Diffusion Guidance (CoDiG), a data-efficient and general-purpose framework that integrates barrier functions into the denoising process, guiding diffusion sampling toward constraint-satisfying outputs. CoDiG enables constraint satisfaction even with limited training data and generalizes across tasks. We evaluate our framework in the challenging setting of miniature autonomous racing, where real-time obstacle avoidance is essential. Real-world experiments show that CoDiG generates safe outputs efficiently under dynamic conditions, highlighting its potential for broader robotic applications. A demonstration video is available at https://youtu.be/KNYsTdtdxOU.